计算二重积分∫∫D xy dxdy,其中D是由直线y=2,y=x,xy=1所围成的区域.
人气:360 ℃ 时间:2019-08-23 07:17:07
解答
首先画出积分区域,
x的取值范围是1/y到y,
而y的取值范围是1到2,
所以
∫∫D xy dxdy
=∫(上限2,下限1) y*dy ∫ (上限y,下限1/y) x*dx
显然
∫ (上限y,下限1/y) x*dx
= x²/2 (代入上限y,下限1/y)
=y²/2 -1/(2y²)
那么
∫∫D xy dxdy
=∫(上限2,下限1) y*[y²/2 -1/(2y²)]dy
=∫(上限2,下限1) [(y^3)/2 -1/2y]dy
=(y^4)/8 - (lny)/2 代入上限2,下限1
=15/8-1/2*ln2
推荐
- ∫∫(x^2/y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分. 求过程
- ∫∫(x^2/y^2)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域,计算二重积分.
- 计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成
- ∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.
- ∫∫(x^2/y^2)dxdy,其中D为直线y=x,y=2和双曲线xy=1所围成的区域, 计算二重积
- 设y=ln(1+x)则y’= y”=
- 英语翻译
- 函数y=(cosθ)x2-4(sinθ)x+6对任意实数x都有y>0,且θ是三角形的内角,则θ的取值范围是_
猜你喜欢