n阶矩阵A可逆等价于 A是初等矩阵的乘积,具体如何证明呢
人气:416 ℃ 时间:2020-04-03 06:56:50
解答
n阶矩阵A可逆
当且仅当A与单位矩阵等价;
当且仅当单位矩阵E可以经过若干次行初等变换化为矩阵A;
当且仅当存在若干个初等矩阵E1,E2,...Et,使得Et...E2E1=A
即A是t个初等矩阵的乘积.,
推荐
- 证明有限个n阶可逆矩阵乘积可逆,即A,B均为n阶可逆矩阵,则AB为可逆矩阵
- 设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵
- 证明n阶逆矩阵A为可逆的充分必要条件是它可以表示为一些初等矩阵的乘积时是怎么得到下式的
- 设A,B是n阶矩阵,证明:当且仅当A和B都可逆,乘积矩阵AB可逆.
- 如果A,B是可逆矩阵,证明n阶方阵A,B的乘积AB也为可逆矩阵.
- 77%×99+23%×99 = =
- 加热白糖,白糖发生了什么变化
- 若数轴上表示x的点与原点的距离小于5,则x满足的不等式是
猜你喜欢