点E,F分别在正方形ABCD上的边CB和DC的延长线上,且CE=DF,连接AE,EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点.
请判断四边形MNPQ是"矩形,菱形,正方形,等腰梯形"中的哪种?
人气:248 ℃ 时间:2019-08-22 00:13:57
解答
正方形.证明如下:
连接ED,AF.
△ADE中,M,Q分别是AE和AD的中点,MQ是中位线,MQ//ED 且MQ=1/2ED
同样,△FDE中,PN是中位线,PN//ED且PN=1/2DE
所以 MQ//PN,且MQ=PN=1/2ED
同样MN//PQ,且MN=PQ=1/2AF
易证△ADF全等于△DCE.所以 AF=DE
所以MN=NC=PQ=MQ=1/2AF
角DQC=角DAF,角AQM=角ADE.
因△ADF全等于△DCE,所以角DAF=角CDE,
所以角AQM+角DQC=角ADE+角DAF=角ADE+角CDE=90度
所以角MQC=190-(角AQM+角DQC)=180-90=90度
所以MNPQ的两条对边相互平行,四条边都相等,角MQC=90度
所以MNPQ是正方形.
推荐
- 如图矩形ABCD中,延长CB到E,使CE=AC,F是AE中点.求证:BF⊥DF.
- E,F分别在正方形ABCD的边CB,DC的延长线上,CE=DF,连接AE,EF,AF,DE,AF和DE交于点G,判断AF和DE的关系并证明
- 如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
- 已知:如图,在矩形ABCD中,E为CB延长线上一点,CE=AC,F是AE的中点. (1)求证:BF⊥DF; (2)若AB=8,AD=6,求DF的长.
- 如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
- classroom 用汉语音怎么读
- 需要的英文单词是什么?
- 今年1至8月财政收入达到1030亿元,比去年同期提高了30%,
猜你喜欢