设α是n维非零列向量E为n阶单位矩阵,证明A=E-(2/α的转置乘以α)αα转的转置为正交矩阵.
人气:202 ℃ 时间:2020-03-27 06:16:06
解答

前面点错了,呵呵,敬请谅解

是的,你利用转置的性质算一算,意外着A是对称矩阵
推荐
- 设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵
- 已知A是n阶实对称矩阵,对任一的n维向量X,都有X’(X的转置)AX=0,证明A=0.
- 设@为n维列向量,且@的转置乘以@等于1,矩阵A=E-@乘以@的转置,证明行列式IAI=0
- 设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
- 设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵
- 高数一阶线性微分方程:求微分方程xy'-2y=x³e∧x 满足初始条件y|x=1 =0
- 少年宫合唱团男生人数是女生人数的三分之二,后来又招来1名男生后,这时男生人数是女生人数的70%
- 一个钟的分针长10M,从1时到2时分针针尖走过了多少M?从1时到2时分针扫过的面积是多少平方M?
猜你喜欢