在三角形ABC中,abc分别是内角ABC的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
求sinA+sinC的最大值
对,不好意思求sinB+sinC的最大值
人气:349 ℃ 时间:2019-08-22 18:10:10
解答
求:sinB+sinC的最大吧
假设外接圆半径r
sinA=a/(2r),sinB=b/(2r),sinC=c/(2r)
2asinA=(2b+c)sinB+(2c+b)sinC
转换:b^2+c^2+bc-a^2=0
(b^2+c^2-a^2)/(2bc)=-1/2=cosA
A=120,B+C=60
sinB+sinC
=2sin[(C+B)/2]*cos[(C-B)/2]
=cos[(C-B)/2]
推荐
- 在△ABC中,a、b、c分别为内角A、B、C的对边且2asinA=(2b+c)sinB+(2c+b)sinC
- 在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC. (Ⅰ)求角A的大小; (Ⅱ)若sinB+sinC=3,试判断△ABC的形状.
- 在三角形ABC中,abc分别为内角ABC的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
- 在三角形ABC中,abc分别是内角ABC的对边,且2asinA=(2b+c)sinB+(2c+b)sinC 求A的大小
- 在三角形ABC中,2asinA=(2b+c)sinB+(2c+b)sinC 若sinB+sinC=1,试判断三角形ABC的形状.
- 1.Less than _____ lived there two _____ ago.
- 气气气气成语
- 如果X,Y是实数,X+2Y=4,那么3^X+9^Y的最小值是多少?
猜你喜欢