设数列{an}的前n项和为sn,若对于任意的正整数n都有sn=2an-3n.(1)设bn=an+3,证明:数列{bn}是等比数列
(2)求数列{n倍an}的前n项和
最好请今天晚上9点回复,
人气:481 ℃ 时间:2019-08-19 15:56:03
解答
(1)Sn=2an-3nn=1时,S1=a1,故有:a1=2a1-3,a1=3n>=2时,an=Sn-S(n-1)=2an-3n-[2a(n-1)-3(n-1)]=2an-2a(n-1)-3即:an=2a(n-1)+3两边+3an+3=2[a(n-1)+3]而bn=an+3,代入:bn=2b(n-1)所以数列{bn}是等比数列,q=2,首项...
推荐
- 数列{an}的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n.(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;(2)求数列{nan}的前n项和.
- 设数列{an}的前n项和为sn,若对于任意的正整数n都有sn=2an-3n.(1)设bn=an+3,证明:数列{bn}是等比数列
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,设cn=an/3n-1,求证cn是等比数列.
- 数列{an}的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n.(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;(2)求数列{nan}的前n项和.
- 已知数列{an}是an=2^n,bn=3n+1的等比数列,Cn=(3n+1)*2^n求Sn.要完整过程.
- 新导航初中同步单元测试卷HZZ数学七年级上(14)
- 有关月食英语知识
- 已知函数y=x^2+2(k^2-2k)+2k-5,当x∈[1,2]时,最小值为0,求k的值.
猜你喜欢