已知函数f(x)=(ax^2+x)e^x,其中e是自然数的底数,a属于R (1)当a0,(2)若f(x)在[-1,1]上是单调增函数,求a的取值范围 (3)当a=0时,求整数K的所有值,使方程f(x)=x+2在[K,k+1]上有解
人气:442 ℃ 时间:2019-08-22 08:32:24
解答
∵e^x>0,f(x)>0∴ax^2+x>0∴ax(x+1/a)>0解得x∈(0,-1/a)求导f'(x)=(ax^2+x)'(e^x)+(e^x)'(ax^2+x) =(2ax+1)(e^x)+(e^x)(ax^2+x) ...
推荐
- 已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)=lnx+x-2的零点为b,则下列不等式中成立的是( ) A.f(a)<f(1)<f(b) B.f(a)<f(b)<f(1) C.f(1)<f(a)<f(b
- 已知函数f(x)=ax^2+x-a,a∈R,解不等式f(x)>1
- 已知函数f(x)=(x^2-x-1/a)e^ax(a>0) (1)当a=1时,求函数f(x)的单调区间 (2)若不等式f(x)+5/a≥0对x∈
- 已知函数f(x)=ax2-ex(a∈R,e为自然对数的底数),f′(x)是f(x)的导函数. (1)解关于x的不等式:f(x)>f′(x); (2)若f(x)有两个极值点x1,x2,求实数a的取值范围.
- 已知函数f(x)=(ax^2+bx+c)e^x,其中e为自然数对数的底数,a,b,c为常数,若函数f(x)在=-2处取得极值
- 2010年4月青海玉树地震后,希望小学五年级捐款钱数与六年级捐款钱数比是9:8,已知六年级捐款钱数是2720元
- 平面上有六条两两不平行的直线,试证:在所有的交角中至少有一个小于31度
- 38岁37岁35岁的英文单词要怎么写?
猜你喜欢