设n阶矩阵A满足A^2+2A–3E=0,证明A+4E可逆,并求它们的逆.
人气:304 ℃ 时间:2019-08-21 06:39:29
解答
(A+4E)(A-2E)=A²+2E-8E,由已知条件,左式=-5E,于是A+4E的逆为-1/5(A-2E)
推荐
- 若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩阵,并求A^(-1)
- 设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.
- 矩阵A满足A^2+5A-4E=O,证明A-3E可逆,并求其逆.
- 已知矩阵A满足关系式A^2+2A-3E=0,求(A+4E)^-1.
- 设n阶矩阵A满足方程A^2-2A-4E=O,证明A和A-3E都可逆,并求它们的逆矩阵
- 地球上的生命起源的学说
- 用0,1,2.9共十位数字组成无重复数字的四位数 1.其中能被5整除多少 2.偶数多少
- 收入和支出,零上和零下,这些量都是具有什么意义的量
猜你喜欢