已知函数f(x)=ax^3+bx^2+cx+d是R上的奇函数,且在x=1时取得极小值-2/3
1)求函数f(x)的解析式
2)对任意X1,X2∈[-1,1]证明|f(x1)-f(x2)|≤4/3
人气:406 ℃ 时间:2019-08-17 21:47:39
解答
函数f(x) 为奇函数,
f(-x)=-f(x)
所以-[ax^3+bx^2+cx+d]=a(-x)^3+b(-x)^2-cx+d
所以b=0,d=0
所以f=ax^3+cx
f'=3ax^2+c
当x=1时f(x)有极小值-3/2.
所以x=1是f'=0的一个根,所以3a+c=0
f(1)=a+c=-3/2
联立方程可得:a=3/4,c=-9/4
f(x)=3/4x^3-9/4x
f'(x)=9/4x^2-9/4=9/4(x^2-1)
故当-1
推荐
- 设函数f(x)=x3+bx2+cx(x∈R),若g(x)=f(x)-f′(x)是奇函数 (1)求b,c的值; (2)求g(x)的单调区间.
- 设函数f(x)=x^3+bx^2+cx(x∈R),已知g(x)=f(x)-f `(x)是奇函数.求b,c.
- 已知函数f(x)=ax^3+bx^2+cx是R上的奇函数且f(1)=3 f(2)=12
- 设函数f(x)=ax^3+bx^2+cx+d是奇函数,且当x=-根号3/3时,f(x)取得极小值-2根号3/9
- 已知函数f(x)=ax^3+bx^2+cx+d是奇函数,且当x=—根号3/3时,f(x)取得极小值—2根号3/9.一、求函数解析式
- 在下面的数中间填上加号或减号,使计算的结果得100.
- 一桶油重100千克,用去这桶油的10分之一以后,又买来现在桶里的油的10分之一,这时桶里有油多少千克?
- 解几道高一的数学题目
猜你喜欢