设函数f(x)=ax*3+bx+c(a不等于0)为奇函数,其图像在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.(1)求a,b,c的值;
因为是奇函数 所有c=0
f(x)'=3ax^2+b ,f'(1)=3a+b
x-6y-7=0的斜率是1/6,所以3a+b=-6 到这里为止 我都懂.可是下面就不懂了.
导函数f'(x)的最小值为-12 为什么a>0
为什么f'(0)=b=-12
希望可以说的清楚点.
人气:443 ℃ 时间:2019-09-13 20:47:07
解答
其图像在点(1,f(1))处的切线与直线x-6y-7=0垂直.可知,切线斜率K=-6
导函数f'(x)的最小值为-12
求导f(x)=ax*3+bx+c
f'(x)=3ax*2+b这是一个抛物线,你可以理解为y=3ax*2+b,要有最小值,开口必须向上所以a>0
最小值 的位置在抛物线的对称轴和抛物线的交点处,也就是这个点的纵坐标,这个点的横坐标公式为-b/2a=-b/6a
纵坐标为:公式:(4ac-b^2)/4a得(4*3a*b)/4*3a=-12.得b=-12
f(x)'=3ax^2+b ,f'(1)=3a+b
x-6y-7=0的斜率是1/6,所以3a+b=-6 得a=2
f(x)=2x*3-12x+c
又因为函数f(x)=ax*3+bx+c(a不等于0)为奇函数,奇函数图象关于原点(0,0)中心对称.他肯定是过(0,0)的了.
所以f(0)=0=c
所以f(x)=2x*3-12x
在解这类型的题目时,要看好题目给的条件,理解他给的隐藏条件
推荐
- 设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.求函数f(x)的解析式.
- f(x)=ax^3+bx+c(a不等于0)是奇函数,其图像在(1,f(1))处的切线与直线6x+y+7=0平行,f'(x)最小值为-12
- 设t不等于0,点P(t,0)是函数f(x)=x^3+ax与g(x)=bx^2+c的图象的一个公共点,两函数的图象在点P处有相同切线
- 已知函数f(x)=ax的三次方+cx+d(a不等于0)是R上的奇函数,其图形在x=1处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12,求a,b,c的值
- 设f(x)=ax^3+bx+c为奇函数,其图像在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数的最小值为-12
- 4.唐雎为何要说专诸,聂政,要离这三个人物的事情?
- 使弈秋诲二人弈接下来2句 是什么
- C,O,Na组成的化合物有哪些
猜你喜欢
- 一桶油重五千克,第一天用去这桶油的五分之一,第二天用去五分之四千克,哪一天用去的油多?多多少千克?
- 数字前面用a和an 的用法
- 将细绳或细铁丝穿过吸管把细绳或细铁丝架在屋中用泵把气球吹起来用夹子夹紧口用两
- 1.城市功能分区的三种常见模式
- 八年级上数学题(整式的乘除与因式分解)
- 用数字卡片7,8,9组成能化成有限小数的分数有( ),真分数有( ),假分数有( )
- 描写成熟的词语有什么?
- 一台抽水机每小时抽水量是40m³,抽水到10m高处,求它每小时所做的功及功率,(g=10N/KG)