设R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),且f'(1)=2,则方程f'(x)=0的根为______.
人气:346 ℃ 时间:2019-08-18 06:51:33
解答
由于R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),故两边对x求导,f'(x+y)=f'(x)+4yx=1带入,f'(1+y)=f'(1)+4y=2+4y令1+y=t,则y=t-1;带入上式,f'(t)=2+4(t-1)=4t-2令f'(t)=4t-2...
推荐
猜你喜欢
- 翻译:Perhaps most puzzling of all,how were we able to make sense of what we heard and distinguish the mistakes and errors
- 邀请外国人合影的英语对话怎么说?
- 已知a=(4,-2,6),b=(-1,4,-2),c=(7,5,λ),且a,b,c三个向量共面,求λ的值.
- 正余弦定理题目
- (1-2)×(2-3)×(3-4)×...×(2004-2005)×(2005-2006)×(2006-2007)×(2007-2008);
- (α1,α2...αr)是线性无关向量组,(β1..βr)=(α1..αr)A,证明r(A)=r(β1.βr)
- 如何测量比量筒口大的大石头的体积.
- 现有0.5mol/L(密度为1.03g/cm)的稀H2SO45L,要配制成5mol/L(密度为1.29g/cm)的H2SO4溶液10L,需加入98%(密度为1.84g/cm)的浓H2SO4和水各多少升