已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120,且|b|=2|a|,则向量a与c的夹角
人气:355 ℃ 时间:2020-02-04 07:01:16
解答
由a+b+c=0,可得:
a·c=-(a+b)
a·c
=a·[-(a+b)]
=-(a^2+a·b)
=-(|a|^2+|a|·|b|cos120°)
=-[|a|^2+|a|·2|a|·(-1/2)]
=0
∴a、c的夹角为90°
推荐
- 已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|a|=2|b|,则向量a与c的夹角为( )
- 已知非零向量a,b满足(向量a-向量b)⊥向量b,且(向量a+2向量b)⊥(向量a-2向量b)求向量a与向量b的夹角
- 若向量a、b为两个非零向量,且|a|=|b|=|a+b|,则向量a与a+b的夹角为 _ .
- 已知向量a=(2,0),向量b为非零向量,若向量a+向量b,向量a-向量b与x轴正方向的夹角为30°和120°,求向量b?
- 已知非零向量满足|a|=2,|a-b|=1,则向量a与b夹角的最大值
- EUROPEAN WOLF是用A还是AN
- 设函数的定义域为{x|x不等于0}且f(x)-2f(x分之一)=x 求函数f(x)的解析式
- 一个圆柱体形状的油桶,底面半径是20厘米,里面装了30厘米深的油.已知油桶里的油与油桶的容积的比是5:8,这个油桶的容积是多少立
猜你喜欢
- 随便一个数乘以5加7然后乘以2再减4其结果减10再除以10等于原来的那个数为甚麽
- 想要写一篇关于保持健康的英语作文该怎样写?
- 固定化酶的方法?
- 到,是不是动词
- 梅花的精神值得歌颂.改为双重否定句:
- 大米和面粉共80千克,吃去面粉的1/3和大米的1/5共20千克,大米和面粉各有多少千克.
- 已知A=2x²-x+6,B=-x²+3x-4,求A+B的值
- 直线l上依次有三点A,B,C,AC= 60cm,一只电子蚂蚁甲从C点出发向A点移动,运动速度为lcm/s.(1)当甲走到BC中点时,求它到A,B的距离和;(2)当甲从BC中点D走到AB中点E,共用多长时间?(3)当甲从AB中点E返回时,另一