三角形ABC中,内角A,B,C的对边分别为a,b,c,已知b^2=ac,cosB=3/4.(1)求1/tanA +1/tanC的值
(2)若向量BA*BC=3/2,设函数f(x)=-cos^2x+sinx+a+c+m,且f(x)小于等于1对一切x属于R恒成立,求实数m的取值范围
人气:228 ℃ 时间:2019-09-19 07:43:59
解答
(1)cosB=3/4,从而sinB=√7/4,由正弦定理,b^2=ac等价于7/16=sinB^2=sinAsinC
所以1/tanA +1/tanC=cosA/sinA+cosC/sinC=[cosAsinC+cosCsinA]/[sinAsinC]=sin(A+C)/[sinAsinC]=sinB/[sinAsinC]=√7/4/(7/16)=4√7/7
(2)BA*BC=cacosB=3/2,所以b^2=ac=2
而由余弦定理,2=b^2=a^2+c^2-2accosB,解得a^2+c^2=5
所以a+c=3.
f(x)=sin^2 x-1+sin x+3+m=(sin x+1/2)^2+m+7/4
其最大值在sin x=1时取到,为m+4,
由于f(x)小于等于1对一切x属于R恒成立,所以m+4≤1,即m≤-3
推荐
- 三角形ABC中,内角A,B,C的对边分别为a,b,c,已知b^2=ac,cosB=3/4.(1)求1/tanA +1/tanC的值;(2)设向量BA*向量BC=3/2,求a+c的值.
- 三角形ABC中,内角A、B、C的对边分别为a、b、c,已知a、b、c成等比数列,cosB=3/4 (1)求1/tanA+1/tanC...
- (2011•郑州三模)在△ABC中,tanA=12,cosB=31010,则tanC的值是( ) A.-1 B.1 C.3 D.2
- 在△ABC中,内角A,B,C的对边分别为a,b,c,已知b²=ac,cosB=3/4.(1)求1/tanA+1/tanC的值.
- 在斜三角形ABC中tanC/tanA+tanC/tanB=1,则(a^2+b^2)/c^2
- 2.37的立方根是1.333 23.7的立方根是2.872 那0.0237的立方根是多少?
- 城市化步伐的快速发展,使得生活节奏加快.生活水平的不断提高,家庭庭院也更多的出现在现代人的生活之中.庭院的设计五花八门,由于种种原因,往往缺乏合理的环境设计, 缺乏景观植物的种植设计,致使庭院环境不甚理想.如何改变这种尴尬局面,合理布置有限
- 英语翻译
猜你喜欢