∴Sn+1-Sn=2Sn,
∴
Sn+1 |
Sn |
又∵S1=a1=1,
∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n-1(n∈N*).
∴当n≥2时,an-2Sn-1=2•3n-2(n≥2),
∴an=
|
(II)Tn=a1+2a2+3a3+…+nan,
当n=1时,T1=1;
当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,②
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•
3(1−3n−2) |
1−3 |
∴Tn=
1 |
2 |
1 |
2 |
又∵Tn=a1=1也满足上式,∴Tn=
1 |
2 |
1 |
2 |