若函数y=acosx+b(a,b为常数)的最大值为1,最小值为-7,则y=2+absinx的最大值
人气:131 ℃ 时间:2020-01-28 05:12:33
解答
y=acosx+b(a,b为常数)的最大值为1,最小值为-7
∴{ |a|+b=1 ;-|a|+b=-7
解得:|a|=4,b=-3
∴a=4,b=-3或a=-4,b=-3
当a=4,b=-3时,
y=2+absinx=2-12sinx的最大值为14
当a=-4,b=-3时,
y=2+absinx=2+12sinx的最大值为14
推荐
- 函数y=acosx+b(a,b为常数)的最小值为-7,最大值为1,则y=3+absinx的最大值为
- 若函数y=acosx+b(a,b为常数)的最大值为1,最小值为-7,则y=3+absinx的最大值
- 设函数y=acosx+b(a、b为常数)的最大值是1,最小值是-7,那么acosx+bsinx的最大值是( ) A.1 B.4 C.5 D.7
- 函数y=acosx+b(a、b为常数),若-7≤y≤1,求bsinx+acosx的最大值.
- 若函数y=cosx+b(a,b为常数)的最大值为1,最小值为-7,则y=3+absinx的最大值为
- 甲乙两地相距240千米,一辆汽车由甲地开往乙地,每小时24千米,行了全程的30%.
- 以《白鹭》的美在于…开头写一段话.
- 一项工程 甲单独修用20天完成 乙单独修用30天完成 甲乙一起修要多少天?
猜你喜欢