8b2 |
a2 |
∴sin2C=
4b2 |
a2 |
∵C为三角形内角,∴sinC>0,
∴sinC=
2b |
a |
∵
a |
sinA |
b |
sinB |
b |
a |
sinB |
sinA |
∴sinC=
2sinB |
sinA |
∵A+B+C=π,
∴sinB=sin(A+C)=sinAcosC+cosAsinC,
∴2sinAcosC+2cosAsinC=sinAsinC,
∵sinA•sinC≠0,
∴
1 |
tanA |
1 |
tanC |
1 |
2 |
(2)∵
1 |
tanA |
1 |
tanC |
1 |
2 |
∴tanA=
2tanC |
tanC−2 |
∵A+B+C=π,
∴tanB=−tan(A+C)=−
tanA+tanC |
1−tanAtanC |
tan2C |
2tan2C−tanC+2 |
∴
8 |
15 |
tan2C |
2tan2C−tanC+2 |
整理得tan2C-8tanC+16=0,
解得:tanC=4,
将tanC=4代入得:tanA=
2tanC |
tanC−2 |