f(x)=πsinx/4 若存在x1,x2使得对任意的实数x,都有f(x1)≤f(x)≤f(x2)恒成立 求|x1-x2|最小值
人气:343 ℃ 时间:2020-06-04 15:36:31
解答
函数的周期是8π.
因为对任意的x属于R都有f(x1)≤f(x)≤f(x2),
所以f(x2)为f(x)的最大值,f(x1)为f(x)的最小值,
x1-x2的绝对值的最小值是f(x)的半个周期是4π.
推荐
- 已知f(x)=sinx/4+cosx/4,若f(x1)≤f(x)≤f(x2)恒成立|x1-x2|最小值
- 正实数x1,x2及函数f(x)满足4的x次方=[1+f(x)]/[1-f(x)] 且f(x1)+f(x2)=1 则f(x1+x2)的最小值为( )
- 已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是( ) A.f(4)>f(-6) B.f(-4)<f(-6) C.f(-4)>f(-6) D.f(4)<f(-6)
- 已知函数f(x)=psinx/4,如果存在实数x1,x2,使得对任意的实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值
- 已知函数f(x)=sinx+cosx+|sinx-cosx|,若任意x属于R,f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值
- 二元二次方程组解法
- 用一句话概括孙悟空大闹天宫故事情节
- 不规则立体图形的重心怎么看,(具体问题见问题补充)我是高一新生,这个问题不太懂,
猜你喜欢