> 数学 >
f(x)具有二阶连续导数,f(0)=0,证明g(x)在负无穷到正无穷的导函数连续
当不等于零时g(x)=f(x)/x;当x=0时g(x)=f′(0)
人气:382 ℃ 时间:2019-08-19 00:40:32
解答
当x不等于零时g(x)=f(x)/x,显然f(x)具有二阶连续导数,1/x也是可导的,故g′(x)=[xf′(x)-f(x)]/x^2,当x不等于0时,由于f(x)具有二阶连续导数,故f′(x)也是连续的,显然1/x^2也是连续的,由连续的可加性及可乘性知,当x不...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版