> 数学 >
若AB=2,AC=根号2BC,则SΔABC的最大值是____.
人气:299 ℃ 时间:2019-08-21 22:51:01
解答
设,BC=m,有AC=√2m,S三角形ABC=S.
S三角形ABC=1/2*sinB*AB*BC=1/2*sinB*2*m=S,
sinB=S/m,
cosB=√(1-sin^2B)=√(1-S^2/m^2).
而,cosB=(AB^2+BC^2-AC^2)/(2*AB*BC),有
√(1-S^2/m^2)=(4-m^2)/4m.两边平方,得
16S^2=-(m^2-24m^2+16)
=-(m^2-12)^2+128,
当m^2=12时,S^2有最大值,
即,m=2√3时,
S^2=128/16=8,
S=2√2.
即,S三角形ABC的最大值为:2√2.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版