设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
人气:411 ℃ 时间:2019-08-18 13:11:28
解答
(Ⅰ)f'(x)=1+2ax+bx,由已知条件得:f(1)=0f/(1)=2,即1+a=01+2a+b=2解之得:a=-1,b=3(Ⅱ)f(x)的定义域为(0,+∞),由(Ⅰ)知f(x)=x-x2+3lnx,设g(x)=f(x)-(2x-2)=2-x-x2+3lnx,则g/(x)=−...
推荐
猜你喜欢
- 采蒲台的苇 中四十多岁的男子牺牲后,作者突出描写他的血,有什么作用
- 做个好梦英语口语怎么说
- 唱歌跳舞用英语怎么说
- 2,8,18,32,52的规律
- 已知∠AOB=90°,OC是它的一条三等分线,则∠AOC等于( )
- look at the pictures and answer the question.
- 3.饲养场养鸡、鸭、鹅的只数比是4:3:2,这个饲养场养的鸡比鹅多240只,这个饲养场共养鸡、鸭、鹅各多少
- 找出错误 please write down it