> 数学 >
已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+√3 asinC-b-c=0,求A
人气:126 ℃ 时间:2020-06-03 20:50:28
解答
acosC+√3 asinC-b-c=0
acosC+√3 asinC=b+c
由正弦定理,得
sinAcosC+√3 sinAsinC
=sinB+sinC
=sin(A+C)+sinC
=sinAcosC+sinCcosA+sinC
即,√3 sinAsinC =sinCcosA+sinC
因为sinC≠0
所以,√3 sinA-cosA=1
sin(A-30°)=1/2
A=60°acosC+√3 asinC=b+ca(cosC+√3 sinC)=b+c由正弦定理,得a/sinA=c/sinC=b/sinBa=csinA/sinCsinB=bsinC/ccsinA/sinC(cosC+√3 asinC)=b+csinA(cosC+√3 asinC)=(b+c)*sinC/csinAcosC+√3 sinAsinC=bsinC/c +sinCsinAcosC+√3 sinAsinC=sinB+sinCsinAcosC+√3 sinAsinC=sin(180-(A+C))+sinCsinAcosC+√3 sinAsinC=sin(A+C)+sinC
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版