设f(x)是闭区间[0,1]上连续函数,且f(x)=1/(1+x^2)+x^3∫f(t)dt
∫f(t)dt是定积分,上限是1,下限是0,求定积分∫f(x)dx,上限,下限仍是1和0
人气:347 ℃ 时间:2019-10-19 17:04:16
解答
设定积分∫(上限1,下限0)f(x)dx=k则:f(x)=[1/(1+x^2)]+kx^3∫(上限1,下限0)f(x)dx=∫(上限1,下限0)1/(1+x^2) dx +k∫(上限1,下限0)x^3dxk=arctanx +k*(1/4)x^4 |(上限1,下限0)k=(pi/4)+(k/4)k=pi/3...
推荐
- 设f(x)是闭区间[0,1]上的连续函数,且f(x)=[1/(1+x^2)]+x^2∫f(t)dt,求∫f(x)dx.定积分上限1,下限0.
- 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)dt 证明:在内有
- 设f(x)为连续函数,且满足∫(上x^3-1,下0)f(t)dt=x,则f(7)=
- 设f(x)连续,则ddx∫x0tf(x2−t2)dt=( ) A.xf(x2) B.-xf(x2) C.2xf(x2) D.-2xf(x2)
- 汉译英 急用
- 到课外活动时间了
- 到一个角的两边距离相等的点在_;角平分线上的点到这个角的两边的距离_.
猜你喜欢