>
数学
>
如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于点G,F是垂足.求证:四边形ABGE是等腰梯形.
人气:497 ℃ 时间:2020-06-11 08:02:21
解答
证明:∵四边形ABCD是正方形,
∴AC⊥BD,BO=CO,
∠ABO=∠ABE+∠EBO=45°,
∠BCO=∠BCG+∠GCO=45°,
∵CF⊥BE,
∴∠BEC+∠GCO=90°,
∵AC⊥BD,
∴∠EBO+∠BEC=90°,
∴∠EBO=∠GCO,
∴∠ABE=∠BCG,
在△ABE和△BGC中,
∠ABE=∠BCG
∠BAC=∠OBC=45°
AB=BC
∴△ABE≌△BGC,
∴AE=BG,
∴EO=GO,
∠OEG=∠OAB=45°
∴EG∥AB
∴AE=BG,
∴四边形ABGE是等腰梯形.
推荐
如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于点G,F是垂足.求证:四边形ABGE是等腰梯形.
如图,正方形ABCD的对角线AC、BD相交于点O,BE平分∠OBA,CF⊥BE于点F,交OB于点G.求证:OE=OG.
如图,正方形ABCD的对角线AC上取一点E,使AE=CD,过点E作EF丄AC交BC于点F,求证:CE+CF=AB
如图所示,在▱ABCD中,点E,F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已知标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相
如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC. (1)求证:DE=BE; (2)求证:EF=CE+DE.
and you what you will do today翻译速度
如何检验氢氧化钠部分变质
you use it to make dinner的英文解释是什么?
猜你喜欢
请补充下列名言警句 学而不厌,_____采得百花成蜜后_______,落花不是无情物————————————
英语翻译
选 哪个?请英语专家解析和 排除 you can't finish the task in less than an hour ,I suppose?
在边长为1的正三角形中,任意放入5个点,证明:其中至少有两个点的距离不大于二分之一?
如图,C,D,E将线段AB分成2:3:4:5四部分,M,P,Q,N分别是AC,CD,DE,EB的中点,且MN=21,求线段PQ的长度.
【物理】初三“密绕法”测直径的问题
频率与位相的关系(大学物理)
对于函数f(x)=-x²+2|x|+3 (1)判断函数奇偶性 (2)画出函数图像 (3)指出函数单调区间及单调性
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版