∫(0,x)f(x-t)dt求导.令u=x-t,du=-dt,原式=-∫(x,0)f(u)du为什么
dt=-du,并且上下限换了,不是应该再添一个负号吗,所以原式=∫(x,o)f(u)du.我这样想,为什么错了.
人气:159 ℃ 时间:2020-01-27 08:42:41
解答
∫[0,x] f(x-t)dt
令u=x-t,则du=-dt
∫[0,x] f(x-t)dt
=∫[x-0,x-x] f(u)(-du)
=-∫[x,0] f(u)du
实际上只是做了u=x-t的变换,并没有交换上下限.因为原上下限为(0,x)是t的取值范围,令u=x-t后,当t=0时,u=x-0=x;当t=x时,u=x-x=0.即t∈(0,x),则u∈(x,0),所以积分变量换成u后,上下限就自然变成了(x,0),而不是再次交换上下限
当然也可以继续化简下去
=-∫[x,0] f(u)du
=∫[0,x] f(u)du
此时就是交换上下限了,而负号也就没有了
如果直接写成∫[0,x] f(x-t)dt = ∫[0,x] f(u)du其实就是将以上两步合并(也就是跳步骤),初学者可能就很难理解了,所以最好分步写∫[0,x] f(x-t)dt =(令u=x-t)= -∫[x,0] f(u)du =(交换上下限)= ∫[0,x] f(u)du
推荐
- ∫0~x[(t-1)∫0~t^2v(u)du]dt 求导得多少
- 变限积分求导问题 ∫tf(x^2-t^2)dt 上限x,下限0.设x^2-t^2=u,怎么得到-1/2∫f(u)du 上限0下限x^2,积分
- 设f(x)为连续函数,证明:∫下0上x f(t)(x-t)dt=∫下0上x(∫下0上t f(u)du)dt
- 微积分中为什么令x-t=u则dt=-du?
- 对0到x上f(x+t)dt的变上限积分求导时令 x+t=u 则dt=du 为什么不是d(x+t)=du即dx+dt=du呢
- -1到-5之间只有3个负数._.(判断对错)
- 一道六年级语文题~~快来~急
- different,in,Shanghai,was,many,years,ago,life,very连词成句
猜你喜欢