设f(x)在[a,b]连续且f′(x)>0,证明∫(a,b) xf(x)dx≥(a+b)/2 ∫(a,b)f(x)dx
人气:187 ℃ 时间:2019-10-26 16:00:52
解答
构造函数:F(u)=2∫[a--->u] xf(x)dx-(a+u)∫[a--->u]f(x)dx,u∈[a,b],显然有F(a)=0F'(u)=2uf(u)-∫[a--->u]f(x)dx-(a+u)f(u)=uf(u)-af(u)-∫[a--->u]f(x)dx=f(u)(u-a)-∫[a--->u]f(x)dx由积分中值定理:∫[a--->u]f...
推荐
- 设f(x)在[a,b]上连续,且严格单增,证明:(a+b)∫(上b下a)f(x)dx
- 设f(x)在[0,1]上可微,且f(1)=2∫0~1/2 xf(x)dx,证明存在ξ属于(0,1),使f(ξ)+ξf'(ξ)=1
- 设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx
- 设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
- 设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx
- 火的分子结构是什么样的?
- 发现怎么造句
- 2.9*0.45+0.29*4.2+0.029*13怎样简算
猜你喜欢