y=ln(tanx)/ln(sinx),求dy/dx,
人气:367 ℃ 时间:2020-03-13 02:37:54
解答
y=ln(tanx)/ln(sinx)
dy/dx = [lnsinx .d/dx(lntanx) - lntanx d/dx(lnsinx) ] /[ln(sinx)]^2
= [lnsinx .(1/tanx) (secx)^2 -lntanx .(1/sinx) cosx ] /[ln(sinx)]^2
推荐
- y=ln sinx 求dy/dx
- ln y = e^x sinx 求dy/dx.
- 设y=ln(tanx+secx),求dy/dx
- y=ln(sinx)求y",dy
- 设函数y=f(x)由方程ln(x^2+y)=x^3+sinx确定,求dy/dx(x=0)
- 已知幂函数y=(m^2-5m+7)x^(m^2-6)在区间(0,+∞)上单调递增,则实数m的值是多少 3,
- 高一文言文句式解析题.
- 8,1,4,5算24点,
猜你喜欢