若A是n阶方阵,且AAT=E,|A|=-1,证明|A+E|=0.其中E为单位矩阵.
人气:476 ℃ 时间:2019-10-17 04:19:40
解答
证明:∵|A+E|=|A+AAT|=|A||E+AT|=-|(E+A)T|=-|E+A|
∴2|E+A|=0,即|E+A|=0.
推荐
- 设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
- 大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
- 若A是n阶方阵,且AAT=E,|A|=-1,证明|A+I|=0.其中I为单位矩阵
- 若A是n阶方阵,且AAT=E,|A|=-1,证明|A+E|=0.其中E为单位矩阵.
- 如何证明方阵A的行列式等于0,则它的伴随矩阵的行列式也等于0>
- 1.——that he stayed at home all day without meeting anyone.
- 我数学还不错,但英语很烂,永远在75分左右;还有地理烂啊!我是广东省高二文科生..
- 甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少.
猜你喜欢