三角函数题:设三角形ABC的面积为S,S的范围为根号3到3,且向量AB乘以向量BC等于6,向量AB与向量BC的夹角为θ.
求:(1)θ的取值范围!(2)求函数f(θ)=(sinθ)平方+2sinθcosθ+3倍cosθ的平方的最小值.
2.已知向量m=(cosθ,sinθ)和n=(根号2-sinθ,cosθ),θ∈(π,2π)且|m+n|=5分之8倍根号2,求cos(θ/2+π/8)的值?
人气:260 ℃ 时间:2019-08-21 23:16:45
解答
1
1)
做AD垂直BC于D
三角形ABC的面积=1/2 *AD*BC=1/2 *AB *BC &sinθ
已知三角形ABC的面积S满足 √3≤S≤3,且向量AB乘以向量BC等于6
(√3)/3≤sinθ≤1
θ∈[∏/3,2∏/3]
2)
f(θ)=(sinθ)^2+2sinθcosθ+3(cosθ)^2=(sinθ+cosθ)^2+2(cosθ)^2≥|2(sinθ+cosθ)(√2cosθ)|
以上仅当sinθ+cosθ=√2cosθ时,等式成立
当sinθ/cosθ=√2-1时.
f(θ)≥|2(sinθ+cosθ)(√2cosθ)|=(2√2)(tanθ+1)(cosθ)^2=4(cosθ)^2=4/(1+(tanθ)^2)=4/(4-2√2)=2+√2
即当tanθ=√2-1时,f(θ)取最小值2+√2
2.|m|=√(sinθ^2+cosθ^2)=1
|n|=√(2-2√2sinθ+sinθ^2+cosθ^2)=√(3-2√2sinθ)
|m+n|=(8√2)/5
(1+√(3-2√2sinθ)) =(8√2)/5
整理
sinθ=8/5-(9√2/50)
cosθ=√(1-sinθ^2)
再求出
cos(θ+π/4)=cosθcosπ/4 - sinθsinπ/4
再求出
cos(θ/2+π/8)=-√((1+cos(θ+π/4))/2 )
推荐
- 1.已知三角形ABC的面积S满足 根号3≤S≤3,且向量AB乘以向量BC等于6,向量AB与向量BC的夹角为θ.
- 已知三角形ABC的面积S满足根号3大于等于S小于等于3,且向量AB*向量BC=6,其夹角为a
- 在三角形ABC中,向量AB.向量BC等于3,三角形ABC面积S属于(3/2,3倍根号3/2),AB与BC夹角取值范围
- 已知三角形ABC的面积S满足根号3大于等于S小于等于3,且向量AB*向量BC=6,其夹角为a (1)求a的取值范围(2)求f(a)=(sina)^2+2sina*cosa+3(cosa)^2的最小值 最大值
- 已知三角形ABC的面积S满足根号3小于或等于S小于或等于3,且向量AB×向量BC=6,向量AB和向量BC的夹角为a,
- 若一个数的绝对值是8,另一个数的绝对值是4,且这两个数的积为负数,求这两个数中大数除以小数的商.
- 化学关于摩尔质量的公式
- 在下列四句话中,最能准确反映计算机主要功能的是
猜你喜欢
- Let's _______ a soccer ball,Jack.
- 超级聪明题喔,有挑战~
- 黑眼珠是眼睛的什么结构?
- 已知整值随机变量X的概率分布为:P(X=k)=1/2^k,k=1,2,
- 解下列方程 (x-6)(x+6)=64 x的平方+x-1=0 16(y-2)的平方=9(y+3)的平方
- i like all the other subject ? english
- 体育节征文
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0