求证:k取任何实数,方程二分之一x的平方加(2k减1)加3k的平方加2等于0没有实数根
人气:284 ℃ 时间:2019-09-18 05:28:45
解答
方程 1/2*x^2+(2k-1)x+(3k^2+2) = 0 的判别式等于
(2k-1)^2-2(3k^2+2) = -2k^2-4k-3 = -2(k+1)^2 -1 ≤ -1 < 0 ,
所以方程没有实根 .懂了
推荐
- 求证,不论k取任何实数,方程1/2x的平方加上括号两k减一乘x加上3k的平方加上2等于零都没有实数根
- 求证不论x为任何实数,方程二分之一x平方+(2k-1)x+3k平方+2=0都没有实数根
- 求证不论k为任何实数关于x的一元二次方程(k+1)x的平方+(3k+2)x+k-二分之一=0总有两个不相等的实数根
- 不论m为何实数关于x方程二分之一x方减x倍m加一加m方加二m加二等于�
- 判断关于X的一元二次方程(K+1)乘以X的平方+(3K+2)X+K-二分之一=0的根的情况(其中K不等于-1)
- 谁能把C T I N K E 拼成一个英语单词?
- a,sell,book,she,price,this,good,at,very 连词成句
- 一个长方形的周长为50分米,长和宽的比是16:9,这个长方形的面积是多少
猜你喜欢