如图,AE是○O直径,DF切○O于B,AD⊥DF于D,EF⊥DF于F.
(1)求证:EF+AD=AE (2)若EF=1,DF=4,求四边形ADFE的周长.第一问我会,只是不知第二问如何做,烦请尽量不要使用相似,因为我还没有学.以及,不好意思,没有图.就是一个圆一条直径的一侧有一个直角梯形,此梯形斜边为直径,另一边与圆相切于B.
人气:306 ℃ 时间:2019-08-19 09:43:34
解答
(1)证明:连接OB
因为DF切圆O于B
所以OB垂直DF
因为AD垂直DF于D
EF垂直DF于F
所以AD平行OB平行EF
所以AO/OB=DB/BF
因为OA=OB
所以DB=BF
所以OB是梯形ADFE的中位线
所以OB=1/2(AD+EF)
因为AE是圆O的直径
所以角ABE=90度
所以三角形ABE是直角三角形
因为OA=OB
所以OB是直角三角形ABE的中线
所以OB=1/2AE
所以EF+AD=AE这个……谢谢你的回答,不过题目上我已经说了第一问我会做,只是不知道第二问怎么做。 ...算了,问了同学,已经会了。目前只有你回答,就采纳你吧。
推荐
- 如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF等于_.
- 已知 如图AB平行于CD AD交BC于点O EF过点O 分别交AB CD于点E F 且AE=DF 求证O是EF的中点(过程完整,后面要写原因.THANK YOU...)
- 如图 在正方形ABCD中 E是对角线AC上的一点 且CE=CD EF⊥AC交AD于F 则AE EF DF的关
- 如图 ,AD是三角形ABC的角平分线DE平行AC,DE交AB于E,EF平行AB,DF交AC于点F.AE与CF
- 已知:如图,EF‖BC,AE²=AD·AB.求证:DF‖EC.
- 为什么都说鞭炮污染严重,会产生大量有毒气体,会造成空气污染,再者说,只有过年和
- 求一篇关于网络的危害的英语作文 假如你是李平 你的笔友王强沉迷电脑游戏严重身心健康
- 靠墙边围成一个花坛,围花坛的篱笆长46米,求这个花坛的面积.
猜你喜欢