已知函数f(x)=xex(e为自然对数的底).
(1)求函数f(x)的单调递增区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程.
人气:143 ℃ 时间:2019-10-10 06:01:31
解答
f(x)=xex⇒f′(x)=ex(x+1)
(1)令f′(x)>0⇒x>-1,即函数f(x)的单调递增区间是(-1,+∞);(6分)
(2)因为f(1)=e,f′(1)=2e,(9分)
所以曲线y=f(x)在点(1,f(1))处的切线方程为
y-e=2e(x-1),即2ex-y-e=0.(12分)
推荐
猜你喜欢
- jan has lunch at twelve 对 at twelve 提问
- 一瓶2升的果汁喝了10分之3,还剩多少毫升
- 把长8cm,宽3cm,高3cm的长方体锯成一个最大的正方体,锯掉部分的体积是多少?
- 象公路 水路 铁路还有什么路?
- 温室效应,臭氧空洞,酸雨分别是什么引起的?
- 一个最简分数,它的分子分母的积是100,这个最简分数是( )
- 求曲线y=1/2x^2,x^2+y^2=8所围成的图形面积
- 已知向量a,b满足| a |=1 b=(2,1)且λ a+b=0 则 |λ |=