已知f(x)=asinx+bcosx,f(3/π)=1 f(x)的最大值取值范围?
人气:495 ℃ 时间:2020-04-04 14:50:12
解答
f(3/π)=asinπ/3+bcosπ/3=a/2+ √3b/2=1 所以a= 2- √3b
又令cos t= a/ √(a^2+b^2) ,sint=b/ √(a^2+b^2)则
f(x)=(costsinx+sintcosx) √(a^2+b^2)=sin(x+t)*√(a^2+b^2)
f(x)的最大值为√(a^2+b^2)=√[(2- √3b)^2+b^2] = √(4b^2-4 √3b+4)=2 √[(b-1/2)^2+3/4] >= √3
f(x)取值范围为[ √3,无穷大)
推荐
猜你喜欢
- 鸡兔同笼,有8个头,20条腿,鸡和兔各有多少只?用算术方法怎么做
- 在一张长方形纸上剪一个最大的三角形,三角形的面积占长方形面积的_%.
- 判断:轮系中使用惰轮既可变速也可变向?并说明理由
- 地震和天上飞的飞机有关系吗
- 在为希望工程捐款活动中,某同学对甲,乙两班捐款情况进行统计,得到如下信息:甲班比乙班多2人,而乙班有40人;甲班比乙班多捐款100元;乙班平均每人捐款钱数是甲班平均每人捐款钱数的五分之四倍
- 已知正方体的体积,求棱长 体积64000平方厘米
- 玛丽擅长体操.用英语怎么说?
- 一个长方体的高减少5厘米后变成了一个正方体,此时长方体的表面积减少100平方厘米,