求 lim n→∞ ∫[1,0]x^n*dx/(1+x^(1/2)+x) 说是按定积分的定义或性质求,怎么求呢?
人气:204 ℃ 时间:2020-01-30 07:59:00
解答
对被积函数做估计即可.
当0=1,因此
x^n>=被积函数>=x^n/3
于是 ∫[1,0]x^ndx>=∫[1,0]x^n*dx/(1+x^(1/2)+x)>=∫ [1,0]x^n/3dx
即 1/(n+1)>=∫[1,0]x^n*dx/(1+x^(1/2)+x)>=1/(3(n+1)),
由夹逼定理知道原极限是0.
推荐
猜你喜欢
- 造句:天衣无缝和相安无事,要造一个句子,不能分开
- 习作:我喜欢的书中人物------200字左右
- 一根钢管长5米,平均截成8段,每段是这根钢管的(—);5段是这根钢管的(—),长(—)米
- 今天的事是我的错,对不起,请大家原谅,如果大家不能谅解,我会选择离开用英语怎么说啊
- 高一地理问题
- huo是三拼音节吗
- 水果店远处两框苹果共75千克.如果将甲框苹果的6分之1装入乙框,这时,甲乙两框苹果重量比是2;3,甲乙原来两框各有多少千克苹果
- 2a-3b/9=3a-2b/3=2