已知二次函数f(x)=ax2+bx,满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.求f(x)的解析式
人气:286 ℃ 时间:2020-01-29 05:59:03
解答
f(1+x)=f(1-x)
对称轴是x=1
所以-b/(2a)=1
b=-2a
ax²+bx=x
ax²+(b-1)x=0
x[ax+(b-1)]=0
x=0,x=-(b-1)/a
等跟则-(b-1)/a=0
b=1
a=-b/2=-1/2
f(x)=-x²/2+x
推荐
- 已知二次函数f(x)=ax^2+bx(a,b属于R,a≠0),满足条件f(-x+5)=f(x-3),且方程f(x)=x有等根.
- 已知二次函数f x=ax^2+bx满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根
- 已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根. (1)求f(x)的解析式; (2)是否存在实数m、n(m<n),使f(x)的定义域和值域分
- 77%×99+23%×99 = =
- 加热白糖,白糖发生了什么变化
- 若数轴上表示x的点与原点的距离小于5,则x满足的不等式是
- 水果店有一批水果,售出160箱,正好售了这批水果的80%,水果店还剩下水果多少箱?
- 神态安详,镇定,充满必胜的信心,这是哪个成语的意思
猜你喜欢