证明函数f(x)=ax^2+bx+c(a>0),且f(1)=-a/2.有2个零点.
人气:317 ℃ 时间:2020-06-09 10:30:34
解答
由f(1)=-a/2,得a+b+c=-a/2
所以b=-3a/2-c
所以b^2-4ac=9a^2/4+3ac+c^2-4ac
=9a^2/4-ac+c^2
=2a^2+(a/2-c)^2
因为a>0,所以上式恒大于0,所以原函数与x轴有两个交点,即有2个零点
推荐
- 已知函数f(x)=ax^2+bx+c中,a+b+c=0,a>b>c,证明函数F(x)有两个不同的零点
- 已知二次函数f(x)=ax2+bx+c. (1)若a>b>c且f(1)=0,试证明f(x)必有两个零点; (2)若对x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=1/2[f(x1)+f(x2)]有两个不等实根,证明必有
- 二次函数f(x)=ax^2+bx+c,若a>b>c,f(1)=0,试证明f(x)有两个零点(在线等)
- 已知函数f(x)=ax²+bx+c中,a+b+b=0,a>b>c.证明函数f(x)有两个不同的零点
- 若函数f(x)=ax+b(a≠0)有一个零点是2,那么函数g(x)=bx^2-ax的零点是什么?
- full time nanny阅读翻译
- “浪漫满屋”服装店的老板,为了提高销售额,先将所有商品提价30%,而后又打出“所有商品8折优惠”的广告.原来一件毛衣80元,现在几元了?
- 设x+2z=3y,试判断x²-9y²+4z²+4xz的值是不是定制
猜你喜欢