如何证明1+3+5+7+9+11+2n-1=n的平方
人气:288 ℃ 时间:2020-05-14 13:43:55
解答
令S=1+3+5+7+9+11+.+(2n-1)则S= 1+ 3+ 5 + 7 + 9 + 11 +.+(2n-1)S=(2n-1)+(2n-3)+(2n-5)+(2n-7)+(2n-9)+(2n-11)+.+1两式相加(右边是n个2n)2S=2n *nS=n²即1+3+5+7+9+11+.+(2n-1)=n²
推荐
猜你喜欢
- 车胤盛萤是什么成语意思?
- 谈迁面对厄运的态度能想到什么名言?
- 硫酸`硫酸钠`硝酸`硝酸钠`石墨`金刚石的元素符号是什么
- 永远活在我们心中,英语怎么说?
- 甲乙仓库有化肥48吨,甲仓运出百分之二十,乙仓运进2.4吨,两仓库量相等,问甲乙仓各有多少吨?
- 一个力是8N,一个力是12N,它们的合力最大是多少,最小是多少?
- 已知A(3,0),点P在圆x+y=1上,Q为AP的中点,求点Q的轨迹方程
- 已知函数f〔x〕=1+根号2cos〔2x-4分之拍〕求函数的最小正周期和单调增区间