已知:如图,点E、F、G、H分别在菱形ABCD的各边上,AE=AH=CF=CG求证:四边形EFGH是矩形

人气:196 ℃ 时间:2019-10-19 05:08:47
解答
证明:(1)在平行四边形ABCD中,∠A=∠C,
又∵AE=CG,AH=CF,
∴△AEH≌△CGF
∴EH=GF
在平行四边形ABCD中,AB=CD,AD=BC,
∴AB-AE=CD-CG,AD-AH=BC-CF,
即BE=DG,DH=BF.
又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH
∴GH=EF
∴四边形EFGH是平行四边形
(2)解法一:在平行四边形ABCD中,AB∥CD,AB=CD.
设∠A=α,则∠D=180°-α.
∵AE=AH,∴∠AHE=∠AEH=
(180°-α)/2=90°-α/2
∵AD=AB=CD,AH=AE=CG,
∴AD-AH=CD-CG,即DH=DG
∴∠DHG=∠DGH=
[180°-(180°-α)/2]=α/2
∴∠EHG=180°-∠DHG-∠AHE=90°
又∵四边形EFGH是平行四边形,
∴四边形EFGH是矩形
解法二:连接BD,AC.
∵AH=AE,AD=AB,
∴AH/AD=AE/AB,∴HE∥BD
同理可证,GH∥AC
∵四边形ABCD是平行四边形且AB=AD,
∴平行四边形ABCD是菱形
∴AC⊥BD,∴∠EHG=90°
又∵四边形EFGH是平行四边形,
∴四边形EFGH是矩形
推荐
- 在菱形ABCD中,点E G在AC上,点F H在BD上且AE=CG,BF=DH.求证:四边形EFGH是菱形
- 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF. 求证:四边形EFGH是平行四边形.
- 如图,在正方形ABCD中E,F,G,H,分别在它的四边形上,且AE=BF=CG=DH.四边形EFGH是什么特殊四边形你是如何判
- 已知:如图,点E、F、G、H分别在菱形ABCD的各边上,且AE=AH=CF=CG. 求证:四边形EFGH是矩形.
- 如图,E,F,G,H是菱形ABCD的边AB,BC,CD,DA上的点,且AE=CF=CG=AH.求证:EG=FH.
- 哪些是映射,那些映射是函数,那些不是?为什么?(1)设A={1,2,3,4},B={3,5,7,9},对应关系是f(x)=2x=+1,x属于A;(2)设A={1,4,9},B={-1,1,-2,2,-3,3},对应关系是‘A中的元素开平方’
- 这三张卡片上分别写着2,4,5. (1)小红为什么说不公平?积是单数的可能性是多少? (2)把这三个数字换成3,4,5,你觉得公平吗?
- 把一个底面直径是8厘米,高10厘米的圆柱体,割拼成一个近似的长方体后,表面积增加了多少平方厘米?
猜你喜欢