利用数列极限的定义证明lim(n->∞) 1/(n的k次方) = 0
人气:111 ℃ 时间:2019-10-23 02:42:28
解答
Xn=1/n^k
|Xn-a|=|1/n^k-0|=1/n^k<1/n
对于任意给定的正整数ε(设ε<1),只要
1/n<ε,n>1/ε,
则不等式|Xn-a|<ε必定成立.所以,取正整数N=[1/ε],当n>N时有
|1/n^k-0|<ε
即有:
lim(n->∞)1/n^k=0
推荐
猜你喜欢
- when his mother came in,the boy pretended____(do)his homework
- “曲则全,枉则直,洼则盈,敝则新,少则多,多则惑”如何理解,不仅仅是翻译句子!
- 螺旋测微器的读法
- 设f(x)在[0,1]上是单调递减函数 试证明对于任何q属于[0,1]都有不等式∫q/0 f(x)dx≥q∫1/0f(x)dx 求详解
- (善,齐王有信士若此哉!)文言文翻译
- 甲乙丙合伙做生意甲出的钱是乙丙之和的三分之一,乙出的钱甲丙之和的二分之一.
- 什么是实义动词啊?
- 一根绳子长45米,第一次用去了3/5米,第二次用去了原长的2/5,还剩下多少米?