> 数学 >
已知A={y|y=2x²-x-3,x∈R},B={y|y=ax²+x-2,x∈R},B包含A,求实数a的取值范围
人气:370 ℃ 时间:2020-04-24 15:57:55
解答
A={y|y=2(x-1/4)²-25/8,x∈R}=[-25/8,+∞)
由于B={y|y=ax²+x-2,x∈R},B包含A,所以
ax²+x-2≥-25/8
ax²+x+9/8≥0
从而
a>0且△=1-9a/2≤0
a≥2/9
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版