1.已知二次函数f(x)=x2-16x+q+3
(1)函数在区间[-1,1]上存在零点,求实数q的取值范围
(2)是否存在常数t(t大于等于0),使在区间[t,10]上(t属于[0,10]),的最大值与最小值之差为12-t
人气:284 ℃ 时间:2020-05-19 23:52:46
解答
1.f(x)=x^2-16x+64+q-61=(x-8)^2+q-61 对称点为(8,0)[-1,1]
最大值为f(-1)=81-q-61=20-q>=0 q=8,f(10)-f(t)=(q-57)-(t^2-16t+q+3)=-t^2+16t-60=12-t
(t-8)(t-9)=0 t=8,9
当t
推荐
- 1.设函数y=f(x)的定义域为【0,1】,求函数y=
- 怎样解初中有关数学函数的题目?
- 已知函数f(x)的图像与 y=2的-x次方 的图像关于y=x对称,求函数y=f(4x-x²)的递减区间.
- 设函数f(x)是定义域在R上的偶函数,并在区间(负无穷大到0之间)内单调递增,f(2a的平方+a+1)小于f(3a的平方-2a+1),求a的取值范围,并在该范围内求函数y=(1/2)的(a平方-3a+1)次方 的单调递减区间.
- (1)指数函数y=a^x中,a的取值范围是________;
- 根号(N+1)-根号N与根号N-根号(N-1)比较大小
- 短语,是go across还是go cross正确?
- 已知分数7分之a(a是整数),当a()时,它是最小假分数;当a()时,他是真分数.
猜你喜欢