设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解
求A
人气:376 ℃ 时间:2020-03-20 23:04:44
解答
推荐
- 设三阶矩阵A各行元素之和均为3 向量α1=(-1 2 -1)^T α2=(0 -1 1)^T 是齐次线性方程组AX=O的解
- 已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,
- 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0是解,则|A|=?
- 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_.
- 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~
- 中译英
- 合并同类项16x^2y-7(xy^2+xy-x^2+7y^2
- 数学历史上发生过几次危机?各哪几次?详介!
猜你喜欢