| 1 |
| x |
| 1 |
| (x−1)2 |
故函数f(x)在区间(0,1),及(1,+∞)都是单调递增的,
再根据 f(
| 1 |
| e2 |
| 1 | ||
|
| e2 |
| e2−1 |
| (e2−1)+1 |
| e2−1 |
| 1 |
| e2−1 |
| 1 |
| e |
| e |
| e−1 |
| (e−1)+1 |
| e−1 |
| 1 |
| e−1 |
可得 f(
| 1 |
| e2 |
| 1 |
| e |
| 1 |
| e2 |
| 1 |
| e |
再由 f(2)=ln2-1<0,f(3)=ln3-
| 1 |
| 2 |
故选 C.
| 1 |
| x−1 |
| 1 |
| x |
| 1 |
| (x−1)2 |
| 1 |
| e2 |
| 1 | ||
|
| e2 |
| e2−1 |
| (e2−1)+1 |
| e2−1 |
| 1 |
| e2−1 |
| 1 |
| e |
| e |
| e−1 |
| (e−1)+1 |
| e−1 |
| 1 |
| e−1 |
| 1 |
| e2 |
| 1 |
| e |
| 1 |
| e2 |
| 1 |
| e |
| 1 |
| 2 |