连接AC、BD,AC交EF于点H,∵菱形ABCD,
∴AC⊥BD,AD=AB=BC=CD,
∵AE=AF,
由勾股定理得:DF=BE,
∴CF=CE,
∴EF∥BD,
∴AC⊥EF,
∵AE=AF,
∴EH=HF=3,
根据勾股定理得:AH=4,
∵△AEH∽△AEC,
∴
| AH |
| AE |
| AE |
| AC |
∴
| 4 |
| 5 |
| 5 |
| AC |
∴AC=
| 25 |
| 4 |
同理EC=
| 15 |
| 4 |
HC=AC-AH=2.25=
| 9 |
| 4 |
AC交BD与G点,
∵菱形ABCD,
∴∠ACB=∠ACD,
∵∠EHC=∠BGC=90°,△BCG∽△ECH,
CG=
| 1 |
| 2 |
∴BC=
| GC |
| HC |
| ||
|
| 15 |
| 4 |
| 125 |
| 24 |
故答案为:
| 125 |
| 24 |

