在等比数列{an}中,a4a5=32,log2a1+loga2+…+log2a8=______.
人气:480 ℃ 时间:2019-10-10 00:46:59
解答
正项等比数列{an}中,
∵log2a1+log2a2+…+log2a8 =log2[a1a8•a2a7•a3a6•a4a5]=log2(a4a5)4
=log2324=20,
故答案为:20
推荐
- 正数等比数列{an}中,a4a5=32,则log2 a1+ log2 a2+……+ log2 a8=
- 等比数列{an}中,an∈(0,+∞),a3a6=32,则log2(a1)+log2(a2)+……+log2(a8)=
- 数列{an}为等比数列,若a1+a8=387,a4a5=1152,求An
- 3.已知正项等比数列{an}中,a1=8,设bn=log2(an) (n∈N+)
- 在等比数列{an}中,公比q=2,且log2 a1+log2 a2 +log2 a3+……+log2 a10=25
- the pen didn't work.转换成there was --- ----with the pen.
- 解不等式一题~
- 在:42.44.44.46.48.48.48.50.51.51.56
猜你喜欢