∴∠EDB=∠C=90°,
∵∠B是公共角,
∴△EBD∽△ABC,
∴
| BE |
| AB |
| BD |
| BC |
∵AB=20,AC=12,
∴BC=
| AB2−AC2 |
∵DE垂直平分AB,
∴BD=
| 1 |
| 2 |
∴BE=
| AB•BD |
| BC |
| 20×10 |
| 16 |
(2)在Rt△BED中,ED=
| BE2−BD2 |
| (12.5)2−102 |
∴S△EBD=
| 1 |
| 2 |
| 1 |
| 2 |
∵S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
∴S四边形ADEC=S△ABC-S△EBD=96-37.5=58.5.

| BE |
| AB |
| BD |
| BC |
| AB2−AC2 |
| 1 |
| 2 |
| AB•BD |
| BC |
| 20×10 |
| 16 |
| BE2−BD2 |
| (12.5)2−102 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |