一道数学几何题 有思路.
题:在⊙O中,D、E分别为半径OA 、OB上的点,且AD=BE,点C为弧AB上的一点,连接CB、CE,∠AOC=∠BOC
求证 CD=CE
思路是:
三角形AOC,BOC,
边角边分别相等,可证明全等
即可证明,第三边相等,即CD=CE
人气:109 ℃ 时间:2020-02-03 19:38:42
解答
在⊙O中,半径OA =OB,因为AD=BE,故OA-AD=OB-BE,即OD=OE
又因为∠AOC=∠BOC且OC=OC,则三角形DOC与三角形EOC全等,
故而CD=CE
推荐
猜你喜欢
- 一年级孝敬父母手抄报怎么写
- 我的直尺,用英语,一本英汉字典,在铅笔盒里,那枝铅笔,拼写你的名字,一块橡皮,这些用英语怎么说
- in are some school student library the连词成句
- 一组数据-1,-2,x,1,2的平均数为0,则这组数据的方差为_.
- 已知|x+2|+2(y-1/2)的平方=c,求代数式3y的平方-6x的平方y-4y的平方+2x的平方y
- 一道 初二数学 整式的乘除与因式分解 选择题.
- 不等式a^2+3b^2≥x b(a+b)对任意的a,b∈R恒成立,则实数x的最大值是
- 要使关于x、y的多项式1/2x^2-mxy+(1-m)x-ny-3中不含一次项,求m+2n的值.