证明∫(0,a)f(x^2)dx=1/2∫(0,a^2)xf(x)dx (a>0)
人气:362 ℃ 时间:2019-11-09 19:57:45
解答
这是错题
令a=1,f(x)=1
则 左=1 右=1/4
显然不等
推荐
- 设f(x)在[0,1]上可微,且f(1)=2∫0~1/2 xf(x)dx,证明存在ξ属于(0,1),使f(ξ)+ξf'(ξ)=1
- 设f(x)在[a,b]连续且f′(x)>0,证明∫(a,b) xf(x)dx≥(a+b)/2 ∫(a,b)f(x)dx
- 证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
- 设f(x)在[a,b]上连续,且严格单增,证明:(a+b)∫(上b下a)f(x)dx
- 设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx
- 综合素质评价手册中的成长历程怎么写啊?从那方面下好啊
- 若f'(x)=0,xE(a,b),则f(x)=?
- 秦朝的统一有什么历史意义
猜你喜欢