已知椭圆x^2/9+y^2/4=1,直线x+2y+18=0,试在椭圆上求一点P,使点P到这条直线最短
人气:413 ℃ 时间:2020-03-30 05:19:35
解答
在椭圆上作切线L使其平行于直线x+2y+18=0,切点为p.此时p到这条直线的距离有最大值和最小值.
设L的方程为y=-1/2x+b,代入椭圆方程,得
x^2/9+(1/2x-b)^2/4=1
∴4x^2+9(1/2x-b)^2=36
∴25x^2-36bx+36b^2-144=0
△=b^2-4ac=(36b)^2-4×25(36b^2-144)=0
∴b=±5/2
当b=-5/2时,取得最小值
此时切线方程为y=-0.5x-2.5
∴25^2-36(-2.5)x+36(2.5)^2-144=0
∴x=-1.8
∴y=-1.6
∴p坐标为(-1.8,-1.6)
推荐
猜你喜欢
- Let's _______ a soccer ball,Jack.
- 超级聪明题喔,有挑战~
- 黑眼珠是眼睛的什么结构?
- 已知整值随机变量X的概率分布为:P(X=k)=1/2^k,k=1,2,
- 解下列方程 (x-6)(x+6)=64 x的平方+x-1=0 16(y-2)的平方=9(y+3)的平方
- i like all the other subject ? english
- 体育节征文
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0