在△ABC和△A1B1C1中,AD与A1D1分别是BC和B1C1边上的中线,AB=A1B1,AC=A1C1,AD=A1D1,若∠B=60°,
∠C=48°,∠A的度数为-----------?
人气:210 ℃ 时间:2019-08-19 00:53:03
解答
1、∠A=180°-∠B-∠C=180°-60°-48°=72°
2、∠A1=72°
延长AD,截取DE=AD=1/2AE,即AE=2AD连接BE
∵AD是中线,那么BD=CD=
∠ADC=∠BDE
∴△ADC≌△BDE(SAS)
∴AC=BE,∠CAD=∠E,∠ACB=∠EBC=48°
∴∠ABE=∠B+∠EBC=60°+48°=108°
那么∠BAD+∠E=∠BAD+∠CAD=∠BAC=180°-∠ABE=72°
同理延长A1D1,截取D1E1=A1D1=1/2A1E1,连接B1E1
△A1D1C1≌△B1D1E1(SAS)
∴B1E1=A1C1,A1E1=2A1D1
∠B1A1C1=∠A1B1E1
∵AB=A1B1,AC=A1C1,AD=A1D1
∴BE=B1E1,AE=A1E1,AB=A1B1
∴△ABE和△A1B1E1(SSS)
∴∠ABE=∠A1B1E1
∴∠BAC=∠B1A1C1=72°
即∠A1=72°
推荐
- 已知如图,AD、A1D1分别是△ABC与△A1B1C1的中线,且AB:A1B1=BC:B1C1=AD:A1D1求证△ABC相似于A1B1C1
- 已知:如图,AD,A1D1分别是△ABC和△A1B1C1的中线,且AB/A1B1=BC/B1C1=AD/A1D1.求证:
- 已知AD,A1D1分别是三角形ABC和三角形A1B1C1的高AB=A1B1,AD=A1D1,BC=B1C1求证AC=A1C1
- 已知:如图,AD,A1D1分别是三角形ABC与三角形A1B1C1的中线,且AB/A1B1=BC/B1C1 求三角形ABC相似于A1B1C1
- △ABC与△A1B1C1中,AD,A1D1分别是它们的中线,且AB/A1B1=AD/A1D1=AC/A1C1,求证:△ABC∽△A1B1C1
- 9.已知P为平行四边形abcd内一点,S平行四边形abcd=100,则S△pab+S△pcd=().
- 亚硫酸钠试剂久置在空气中被部分氧化成Na2so4,取10克试剂加入到2.5mol/L25mlL硫酸中,完全反应后,加入足量氯化钡溶液,产生18.64克白色沉淀,问试剂中亚硫酸钠的百分含量是多少?
- 英语作文,海的女儿读后感,带翻译的
猜你喜欢