>
数学
>
已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=______(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是______三角形
∵DG平分∠CDE
∴CG=EG(______)
人气:181 ℃ 时间:2019-08-17 21:13:43
解答
证明:∵AD⊥BC,
∴∠ADB=90°,
∵CE是AB边上的中线,
∴E是AB的中点,
∴DE=
1
2
AB(直角三角形斜边上的中线等于斜边的一半),
又∵AE=
1
2
AB,
∴AE=DE,
∵AE=CD,
∴DE=CD,
即△DCE是等腰三角形,
∵DG平分∠CDE,
∴CG=EG(等腰三角形三线合一).
故答案为:
1
2
AB;等腰;等腰三角形三线合一.
推荐
已知如图在三角形abc中AD是BC边上的高线,CE是AB边上的中线,DG垂直CE于G,CD=AE.求证:CG=EG
如图,在△ABC中,DG∥EC,EG∥BC,求证:AE²=ABxAD
已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD. (1)求证:△AGE≌△DAB; (2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的
已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD. (1)求证:△AGE≌△DAB; (2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的
已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD. (1)求证:△AGE≌△DAB; (2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的
正规的辩论赛的规则
计算R^n中基ε1,ε2,…,εn到εn,εn-1,…,ε1的过渡矩阵
t度时某物质的溶解度为100g,则t度时,此物质的饱和溶液中下列质量关系正确的是:
猜你喜欢
can i take a (c .) at your family photo
十分的近义词 喜欢的近义词 仍然的近义词
海南岛英文介绍
人生格言大全
一千克等于多少公斤
除沙尘暴之外,你还知道哪些对人类有威胁的自然灾害
"我算什么"的英文怎么说
一个长方形,宽是6厘米,相当于长的4分之3,这个长方形的面积是多少平方厘米?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版